Fragile X-related proteins regulate mammalian circadian behavioral rhythms.

نویسندگان

  • Jing Zhang
  • Zhe Fang
  • Corinne Jud
  • Mariska J Vansteensel
  • Krista Kaasik
  • Cheng Chi Lee
  • Urs Albrecht
  • Filippo Tamanini
  • Johanna H Meijer
  • Ben A Oostra
  • David L Nelson
چکیده

Fragile X syndrome results from the absence of the fragile X mental retardation 1 (FMR1) gene product (FMRP). FMR1 has two paralogs in vertebrates: fragile X related gene 1 and 2 (FXR1 and FXR2). Here we show that Fmr1/Fxr2 double knockout (KO) and Fmr1 KO/Fxr2 heterozygous animals exhibit a loss of rhythmic activity in a light:dark (LD) cycle, and that Fmr1 or Fxr2 KO mice display a shorter free-running period of locomotor activity in total darkness (DD). Molecular analysis and in vitro electrophysiological studies suggest essentially normal function of cells in the suprachiasmatic nucleus (SCN) in Fmr1/Fxr2 double KO mice. However, the cyclical patterns of abundance of several core clock component messenger (m) RNAs are altered in the livers of double KO mice. Furthermore, FXR2P alone or FMRP and FXR2P together can increase PER1- or PER2-mediated BMAL1-Neuronal PAS2 (NPAS2) transcriptional activity in a dose-dependent manner. These data collectively demonstrate that FMR1 and FXR2 are required for the presence of rhythmic circadian behavior in mammals and suggest that this role may be relevant to sleep and other behavioral alterations observed in fragile X patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Drosophila FMRP and LARK RNA-binding proteins function together to regulate eye development and circadian behavior.

Fragile X syndrome (FXS) is the most common form of hereditary mental retardation. FXS patients have a deficit for the fragile X mental retardation protein (FMRP) that results in abnormal neuronal dendritic spine morphology and behavioral phenotypes, including sleep abnormalities. In a Drosophila model of FXS, flies lacking the dfmr1 protein (dFMRP) have abnormal circadian rhythms apparently as...

متن کامل

Neurobiology of Disease The Drosophila FMRP and LARK RNA-Binding Proteins Function Together to Regulate Eye Development and Circadian Behavior

Fragile X syndrome (FXS) is the most common form of hereditary mental retardation. FXS patients have a deficit for the fragile X mental retardation protein (FMRP) that results in abnormal neuronal dendritic spine morphology and behavioral phenotypes, including sleep abnormalities. In a Drosophila model of FXS, flies lacking the dfmr1 protein (dFMRP) have abnormal circadian rhythms apparently as...

متن کامل

Defective neuronal development in the mushroom bodies of Drosophila fragile X mental retardation 1 mutants.

Fragile X mental retardation 1 (Fmr1) is a highly conserved gene with major roles in CNS structure and function. Its product, the RNA-binding protein FMRP, is believed to regulate translation of specific transcripts at postsynaptic sites in an activity-dependent manner. Hence, Fmr1 is central to the molecular mechanisms of synaptic plasticity required for normal neuronal maturation and cognitiv...

متن کامل

RNA interference: a new mechanism by which FMRP acts in the normal brain? What can Drosophila teach us?

Fragile X syndrome is the most common heritable form of mental retardation caused by loss-of-function mutations in the FMR1 gene. The FMR1 gene encodes an RNA-binding protein that associates with translating ribosomes and acts as a negative translational regulator. Recent work in Drosophila melanogaster has shown that the fly homolog of FMR1 (dFMR1) plays an important role in regulating neurona...

متن کامل

Melatonin as a Novel Interventional Candidate for Fragile X Syndrome with Autism Spectrum Disorder in Humans

Fragile X syndrome (FXS) is the most common monogenic form of autism spectrum disorder (ASD). FXS with ASD results from the loss of fragile X mental retardation (fmr) gene products, including fragile X mental retardation protein (FMRP), which triggers a variety of physiological and behavioral abnormalities. This disorder is also correlated with clock components underlying behavioral circadian r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of human genetics

دوره 83 1  شماره 

صفحات  -

تاریخ انتشار 2008